Tuesday, November 30, 2021

Second death in France in a laboratory working on prions

Second death in France in a laboratory working on prions

Creutzfeldt-Jakob disease has killed a person who handled this infectious agent at Inrae in Toulouse. After a first death in 2019, a moratorium on work on this pathogen has been extended.

By Hervé Morin

Creutzfeldt-Jakob disease killed a few days ago a retired research technician from the National Research Institute for Agriculture, Food and the Environment (Inrae), who had worked in Toulouse in contact of biological tissue infected with prions. This death sows consternation and concern in the scientific community working with these infectious agents. It follows the death, on June 17, 2019, of Emilie Jaumain, a 33-year-old laboratory technician, suffering from the same incurable neurodegenerative disease. The young woman is said to have contracted it in 2010, cutting herself while handling fragments of the brains of mice infected with prions, in another unit of INRAE, in Jouy-en-Josas.

Computer representation of part of a prion protein on a light micrograph of pyramidal nerve cells (neurons, in black) in the cerebellum of the brain. ALFRED PASIEKA / SCIENCE PHOTO LIBRARY

Regarding the retiree from Toulouse, it will be necessary to determine whether she was the victim of a genetic or sporadic form of Creutzfeldt-Jakob disease, if the disease may have been caused by the ingestion of meat contaminated by the agent of encephalopathy. bovine spongiform (BSE, also called mad cow disease) or, as in the case of Emilie Jaumain, if accidental occupational exposure can be claimed. Prion diseases are caused by proteins taking an aberrant conformation, which gives them the property of replicating to form aggregates that are deleterious for neurons. There are around 150 cases per year in France, resulting in fatal degeneration of the central nervous system.


Temporary suspension of work on prions in French public research laboratories

PRESS RELEASE - The general directorates of ANSES, CEA, CNRS, INRAE ​​and Inserm, have decided jointly and in agreement with the Ministry of Higher Education, Research and Innovation to suspend as a precaution all their research and experimentation work relating to prion diseases, for a period of three months.

This precautionary measure is motivated by the knowledge of a possible new case of a person suffering from Creutzfeldt-Jakob disease and who worked in a laboratory for research on prions.

Posted on July 27, 2021

The suspension period put in place as of this day will make it possible to study the possibility of a link between the observed case and the person's former professional activity and to adapt, if necessary, the preventive measures in force in the research laboratories. 

The person with Creutzfeldt-Jakob disease (CJD)1, whose form is not yet known, is a retired INRAE ​​agent. This could be the second case of infectious CJD affecting a scientist who worked on prions, after that of an assistant engineer who died of the disease in 2019, and who was injured in 2010 during of an experiment.

Following this death, a general inspection mission was launched in July 2019 by the ministries of research and agriculture with French laboratories handling prions. Submitted in October 2020, the report concluded on the regulatory compliance of the laboratories visited as well as the presence of a risk control culture within the research teams.

Research around prion proteins, with high public health issues, allows major advances in the understanding of the functioning of these infectious pathogens, and contributes to results that are transferable to other related degenerative diseases such as Alzheimer's and Alzheimer's diseases. Parkinson's.

At the level of each establishment, regular and transparent information will be provided to all the working communities concerned by this measure.

1 The disease Creutzfeldt-Jakob disease (CJD) is one of prion diseases - still called encephalopathies subacute spongiform transmitted(TSE) - of diseases rare, characterized by a degeneration rapid and fatal the system nervous central. They are caused by the accumulation in the brain of a normally expressed protein but poorly conformed - the prion protein - which leads to the formation of deleterious aggregates for neurons. For now , no treatment will allow to change the course of these diseases. It can be of origin sporadic , form the most frequent , original genetic or finally to form infectious following a contamination. 



France issues moratorium on prion research after fatal brain disease strikes two lab workers

By Barbara CasassusJul. 28, 2021 , 4:35 AM

PARIS—Five public research institutions in France have imposed a 3-month moratorium on the study of prions—a class of misfolding, infectious proteins that cause fatal brain diseases—after a retired lab worker who handled prions in the past was diagnosed with Creutzfeldt-Jakob disease (CJD), the most common prion disease in humans. An investigation is underway to find out whether the patient, who worked at a lab run by the National Research Institute for Agriculture, Food and Environment (INRAE), contracted the disease on the job.

If so, it would be the second such case in France in the past few years. In June 2019, an INRAE lab worker named Émilie Jaumain died at age 33, 10 years after pricking her thumb during an experiment with prion-infected mice. Her family is now suing INRAE for manslaughter and endangering life; her illness had already led to tightened safety measures at French prion labs.

The aim of the moratorium, which affects nine labs, is to “study the possibility of a link with the [new patient’s] former professional activity and if necessary to adapt the preventative measures in force in research laboratories,” according to a joint press release issued by the five institutions yesterday.

“This is the right way to go in the circumstances,” says Ronald Melki, a structural biologist at a prion lab jointly operated by the French national research agency CNRS and the French Alternative Energies and Atomic Energy Commission (CEA). “It is always wise to ask questions about the whole working process when something goes wrong.” "The occurrence of these harsh diseases in two of our scientific colleagues clearly affects the whole prion community, which is a small 'familial' community of less than 1000 people worldwide," Emmanuel Comoy, deputy director of CEA's Unit of Prion Disorders and Related Infectious Agents, writes in an email to Science. Although prion research already has strict safety protocols, "it necessarily reinforces the awareness of the risk linked to these infectious agents," he says.

In Jaumain’s case, there is little doubt she was infected on the job, according to a paper published in The New England Journal of Medicine (NEJM) in 2020. She had variant CJD (vCJD), a form typically caused by eating beef contaminated with bovine spongiform encephalopathy (BSE), or mad cow disease. But Europe’s BSE outbreak ended after 2000 and vCJD virtually disappeared; the chance that someone of Jaumain’s age in France would contract food-borne vCJD is “negligible or non-existent,” according to the paper.

A scientist with inside knowledge says the new patient, a woman who worked at INRAE’s Host-Pathogen Interactions and Immunity group in Toulouse, is still alive. French authorities were apparently alerted to her diagnosis late last week. The press release suggests it’s not yet clear whether the new case is vCJD or “classic” CJD, which is not known to be caused by prions from animals. Classic CJD strikes an estimated one person per million. Some 80% of cases are sporadic, meaning they have no known cause, but others are genetic or contracted from infected human tissues during transplantations. The two types of CJD can only be distinguished through a postmortem examination of brain tissue.

Lab infections are known to occur with many pathogens, but exposure to CJD-causing prions is unusually risky because there are no vaccines or treatments and the condition is universally fatal. And whereas most infections reveal themselves within days or weeks, CJD’s average incubation period is about 10 years.

For Jaumain, who worked at INRAE’s Molecular Virology and Immunology Unit in Jouy-en-Josas, outside Paris, that long period of uncertainty began on 31 May 2010, when she stabbed her left thumb with a curved forceps while cleaning a cryostat—a machine that can cut tissues at very low temperatures—that she used to slice brain sections from transgenic mice infected with a sheep-adapted form of BSE. She pierced two layers of latex gloves and drew blood. “Émilie started worrying about the accident as soon as it had happened, and mentioned it to every doctor she saw,” says her widower, Armel Houel.

In November 2017, Jaumain developed a burning pain in her right shoulder and neck that worsened and spread to the right half of her body over the following 6 months, according to the NEJM paper. In January 2019, she became depressed and anxious, suffering memory impairment and hallucinations. “It was a descent into hell,” Houel says. She was diagnosed with “probable vCJD” in mid-March of that year and died 3 months later. A postmortem confirmed the diagnosis.

“The occurrence of these harsh diseases in two of our scientific colleagues clearly affects the whole prion community.” Emmanuel Comoy, French Alternative Energies and Atomic Energy Commission

INRAE only recently admitted the likely link between Jaumain’s illness and the accident. “We recognize, without ambiguity, the hypothesis of a correlation between Emilie Jaumain-Houel’s accident … and her infection with vCJD,” INRAE chair and CEO Philippe Mauguin wrote in a 24 June letter to an association created by friends and colleagues to publicize Jaumain’s case and lobby for improvements in lab safety. (Science has obtained a copy of the letter, which has not been made public.)

Jaumain’s family has filed both criminal charges and an administrative suit against INRAE, alleging a range of problems at Jaumain’s lab. She had not been trained in handling dangerous prions or responding to accidents and did not wear both metal mesh and surgical gloves, as she was supposed to, says Julien Bensimhon, the family’s lawyer. The thumb should have been soaked in a bleach solution immediately, which did not happen, Bensimhon adds.

Independent reports by a company specializing in occupational safety and by government inspectors have found no safety violations at the lab; one of them said there was a “strong culture” of risk management. (Bensimhon calls the reports “biased.”)

The government inspectors’ report concluded that Jaumain’s accident was not unique, however. There had been at least 17 accidents among the 100 or so scientists and technicians in France working with prions in the previous decade, five of whom stabbed or cut themselves with contaminated syringes or blades. Another technician at the same lab had a fingerprick accident with prions in 2005, but has not developed vCJD symptoms so far, Bensimhon says. “It is shocking that no precautionary measures were taken then to ensure such an accident never happened again,” he says.

In Italy, too, the last person to die of vCJD, in 2016, was a lab worker with exposure to prion-infected brain tissue, according to last year’s NEJM paper, although an investigation did not find evidence of a lab accident. That patient and the lab they worked at have not been identified.

After Jaumain’s diagnosis, “We contacted all the research prion labs in France to suggest they check their safety procedures and remind staff about the importance of respecting them,” says Stéphane Haïk, a neuroscientist at the Paris Brain Institute at Pitié-Salpêtrière Hospital who helped diagnose Jaumain and is the corresponding author on the paper. Many labs tightened procedures, according to the government inspectors' report, for instance by introducing plastic scissors and scalpels, which are disposable and less sharp, and bite and cut-resistant gloves. A team of experts from the five research agencies is due to submit proposals for a guide to good practice in prion research to the French government at the end of this year.

The scientific community has long recognized that handling prions is dangerous and an occupational risk for neuropathologists, says neuropathologist Adriano Aguzzi of the University of Zurich. Aguzzi declined to comment on the French CJD cases, but told Science his lab never handles human or bovine prions for research purposes, only for diagnostics. “We conduct research only on mouse-adapted sheep prions, which have never been shown to be infectious to humans,” Aguzzi says. In a 2011 paper, his team reported that prions can spread through aerosols, at least in mice, which “may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories,” they wrote. Aguzzi says he was “totally shocked” by the finding and introduced safety measures to prevent aerosol spread at his own lab, but the paper drew little attention elsewhere.

The moratorium will "obviously" cause delays in research, but given the very long incubation periods in prion diseases, the impact of a 3-month hiatus will be limited, Comoy says. His research team at CEA also works on other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and will shift some of its efforts to those.

Although Jaumain’s diagnosis upset many in the field, it hasn't led to an exodus among researchers in France, Haïk says: “I know of only one person who resigned because they were so worried.”

With reporting by Martin Enserink.

Posted in: EuropeHealthScientific Community

doi:10.1126/science.abl6587


Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

Variant Creutzfeldt–Jakob disease was identified in a technician who had cut her thumb while handling brain sections of mice infected with adapted BSE 7.5 years earlier. The long incubation period was similar to that of the transfusion-transmitted form of the disease.

Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

TO THE EDITOR:

We report a case of variant Creutzfeldt–Jakob disease (CJD) that was plausibly related to accidental occupational exposure in a technician who had handled murine samples contaminated with the agent that causes bovine spongiform encephalopathy (BSE) 7.5 years earlier.

In May 2010, when the patient was 24 years of age, she worked in a prion research laboratory, where she handled frozen sections of brain of transgenic mice that overexpressed the human prion protein with methionine at codon 129. The mice had been infected with a sheep-adapted form of BSE. During this process, she stabbed her thumb through a double pair of latex gloves with the sharp ends of a curved forceps used to handle the samples. Bleeding was noted at the puncture site.

In November 2017, she began having burning pain in the right shoulder and neck. The pain worsened and spread to the right half of her body during the following 6 months. In November 2018, an examination of a sample of cerebrospinal fluid (CSF) obtained from the patient was normal. Magnetic resonance imaging (MRI) of the brain showed a slight increase in the fluid-attenuated inversion recovery (FLAIR) signal in the caudates and thalami (Fig. S1A and S1B in the Supplementary Appendix, available with the full text of this letter at NEJM.org). In January 2019, she became depressed and anxious and had memory impairment and visual hallucinations. There was hypertonia on the right side of her body. At that time, an analysis of CSF for 14-3-3 protein was negative. In March 2019, MRI showed an increased FLAIR signal in pulvinar and dorsomedial nuclei of thalami (Fig. S1C through S1E).

Figure 1.

Detection of Abnormal Prion Protein in Biologic Fluid Samples and Postmortem Findings.

The patient was found to be homozygous for methionine at codon 129 of the prion protein gene without mutation. An analysis of a sample of CSF on real-time quaking-induced conversion analysis was negative for a diagnosis of sporadic CJD. However, an analysis of plasma and CSF by means of protein misfolding cyclic amplification was positive for the diagnosis of variant CJD (Figure 1A and 1B). The patient died 19 months after the onset of symptoms. Neuropathological examination confirmed the diagnosis of variant CJD (Figure 1C and 1D). Western blot analysis showed the presence of type 2B protease-resistant prion protein in all sampled brain areas. The clinical characteristics of the patient and the postmortem neuropathological features were similar to those observed in 27 patients with variant CJD who had previously been reported in France.1 (Additional details are provided in the Supplementary Appendix.)

There are two potential explanations for this patient’s condition. Oral transmission from contaminated cattle products cannot be ruled out because the patient was born at the beginning of the French BSE outbreak in cattle. However, the last two patients who had confirmed variant CJD with methionine homozygosity at codon 129 in France and the United Kingdom died in 2014 and 2013, respectively, which makes oral transmission unlikely. In France, the risk of variant CJD in 2019 was negligible or nonexistent in the post-1969 birth cohort.2

Percutaneous exposure to prion-contaminated material is plausible in this patient, since the prion strain that she had handled was consistent with the development of variant CJD.3 The 7.5-year delay between the laboratory accident and her clinical symptoms is congruent with the incubation period in the transfusion-transmitted form of the disease. The ability of this strain to propagate through the peripheral route has been documented, and experimental studies with scrapie strains have shown that scarification and subcutaneous inoculation are effective routes.4,5 The last known Italian patient with variant CJD, who died in 2016, had had occupational contact with BSE-infected brain tissues, although subsequent investigation did not disclose a laboratory accident (Pocchiari M, Italian Registry of CJD: personal communication). Thus, the last two cases of variant CJD outside the United Kingdom have been associated with potential occupational exposure. Such cases highlight the need for improvements in the prevention of transmission of variant CJD and other prions that can affect humans in the laboratory and neurosurgery settings, as outlined in the Supplementary Appendix.

Jean-Philippe Brandel, M.D. Assistance Publique–Hôpitaux de Paris, Paris, France

M. Bustuchina Vlaicu, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France

Audrey Culeux, B.Sc. INSERM Unité 1127, Paris, France

Maxime Belondrade, M.Sc. Daisy Bougard, Ph.D. Etablissement Français du Sang, Montpellier, France

Katarina Grznarova, Ph.D. Angeline Denouel, M.Sc. INSERM Unité 1127, Paris, France

Isabelle Plu, M.D. Elodie Bouaziz-Amar, Pharm.D., Ph.D. Danielle Seilhean, M.D., Ph.D. Assistance Publique–Hôpitaux de Paris, Paris, France

Michèle Levasseur, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France

Stéphane Haïk, M.D., Ph.D. INSERM Unité 1127, Paris, France stephane.haik@upmc.fr

Supported by a grant (ANR-10-IAIHU-06) from Programme d’Investissements d’Avenir and Santé Publique France.

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

5 References

July 2, 2020

N Engl J Med 2020; 383:83-85

DOI: 10.1056/NEJMc2000687

Metrics


34 year old Doctor Orthopedic Surgeon dies from CJD

Dr. Adam Thomas Dialectos

1987 - 2021

BORN

April 29, 1987

DIED

June 21, 2021

FUNERAL HOME

Bean Funeral Homes & Crematory Inc

1605 Rockland St

Reading, PA 19604

UPCOMING SERVICE

Visitation

Jun, 24 2021

9:00a.m. - 11:00a.m.

Saints Constantine & Helen Greek Orthodox Church

Send Flowers

Share

On Monday June 21, 2021, Dr. Adam Thomas Dialectos, loving husband, father, son, brother, uncle, Nouno, friend at the age of 34. Adam was born on April 29, 1987 in Reading, PA to Athan and Gretchen Dialectos. Adam was a 2005 graduate of Governor Mifflin High School, before receiving his degree in Health Sciences from James Madison University in 2009. Adam attended Philadelphia College of Osteopathic Medicine for medical school and his subsequent residency in orthopedic surgery. Adam was completing his Spine Surgery Fellowship at New England Baptist Hospital in Boston, Massachusetts. On February 7, 2019 Adam married the love of his life and girlfriend of 12 years, Lindsey (Schuler) Dialectos. They brought a beautiful baby boy into this world on January 6, 2021, Athananosis Adam Dialectos. Adam’s passion in life was unceasingly seeking to help others, emphasized by his desire to be a surgeon— a decision he made in his early elementary years. Adam continued this love of medicine throughout his life, which led to his achieving of the Henrietta and Jack Avart Memorial Award in 2019, awarded to the Orthopedic surgery resident who exhibited unparalleled excellence in their field during the residency program. This passion to learn, teach and support was truly understood through the patients whose lives Adam touched. When it came to his patients and coworkers, there was never a job too small for Adam. Those who knew Adam saw his personality shine through in so many other aspects of his life. Adam loved traveling. Some of his most memorable trips were with his wife, and countless snowboard trips with his brother, family, and friends. Adam loved everyone he was around; he loved and was loved by so many. Adam was truly one in a million. Adam is survived by his loving wife, Lindsey, and their son, Athan Adam; His father and mother, Athan and Gretchen; His brother Jordan and sister-in-law Megan, and their daughter Livia, Adam’s Goddaughter. His sister, Rachel, and her significant other, Bo Wagner. Furthermore, Adam is survived by his Yiayia, Joanne Dialectos, wife of the late George Dialectos; his Pop Pop, Donald Harford, husband of the late Nancy Servent; his Aunt Angel and Uncle Scott Helm; his Aunt Kelly and Uncle Darrell Markley. Adam was preceded in death by his Aunt Maria and Uncle Bob Care. Funeral Service will be held at Saints Constantine & Helen Greek Orthodox Church, 1001 East Wyomissing Blvd. Reading on Thursday June 24th. Father Theodore Petrides and Father Thomas L. Pappalas will officiate. Interment will follow at Charles Evans Cemetery. The family will receive relatives and friends at Saints Constantine & Helen Greek Orthodox Church from 9:00am to 11:00am with services beginning at 11:00. In lieu of flowers, contributions may be made to the CJD Foundation at 3634 West Market Street Suite 110 Akron, Ohio 44333 or cjdfoundation.org in remembrance of Dr. Adam Dialectos. Donations may also be made to Saints Constantine & Helen Greek Orthodox Church. Bean Funeral Home, 1605 Rockland Street, Hampden Heights, is in charge of arrangements and online condolences may be made at www.beanfuneralhomes.com.

To plant trees in memory, please visit our Sympathy Store.

Published by Reading Eagle from Jun. 22 to Jun. 24, 2021.


Our sincere condolences to the Family and Friends of Dr. Adam Thomas Dialectos. 

I can't help but ponder, as a Orthopedic Surgeon, Spine Surgery Fellowship, and what the good Doctors work curtailed, i can't help but think this is a potential case of iatrogenic CJD. surgery on humans, i would imagine cadavers as well.

all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, provern, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd. ...terry

least we forget...

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery *** 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892. Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 


Second lab worker with deadly prion disease prompts research pause in France

A lab worker died of prion disease in 2019, nine years after a lab accident.

BETH MOLE - 7/29/2021, 5:16 PM

https://arstechnica.com/science/2021/07/second-lab-worker-with-deadly-prion-disease-prompts-research-pause-in-france/

A 2020 paper published in the New England Journal of Medicine left little doubt that Jaumain had been infected on the job. She had variant CJD, but since Europe’s ‘mad cow’ outbreak ended after 2000 and the disease virtually disappeared, the paper said it was virtually impossible for someone her age in France to contract food-borne vCJD.

Science also said two independent reports – one by government inspectors – had found no safety violations at the lab where Jaumain worked. The press release also noted that the inspectors concluded there was “the presence of a risk control culture within the research teams”. The Jaumain family’s lawyer called the neutrality of the reports into question, however.

At the same time, the government inspectors’ report also revealed that there had been at least 17 accidents among the 100 or so scientists and technicians in France working with prions in the previous decade, raising concerns about how effective this risk control culture is. Five of these occurred when workers “stabbed or cut themselves with contaminated syringes or blades”.


Wednesday, July 28, 2021 

France issues moratorium on prion research after fatal brain disease strikes two lab workers


Volume 26, Number 8—August 2020

Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993–2018 high proportion of physicians with sCJD were surgeons


Saturday, January 23, 2021

Improved surveillance of surgical instruments reprocessing following the variant Creutzfeldt-Jakob disease crisis in England: findings from a 3-year survey



SUNDAY, JULY 19, 2020 

Joseph J. Zubak Orthopaedic surgeon passed away Monday, July 6, 2020, Creutzfeldt-Jakob Disease (CJD)


snip...

Thursday, July 29, 2021 

TSE PRION OCCUPATIONAL EXPOSURE VIA ANIMAL OR HUMAN, iatrogenic transmission, nvCJD or sCJD, what if?


Potential Exposure to Creutzfeldt-Jakob Disease VA Connecticut Healthcare System West Haven, Connecticut

VA OIG releases findings of potential CJD exposure

July 2, 2014




Terry S. Singeltary Sr.

Friday, November 19, 2021

Safe laboratory management of prions and proteopathic seeds and Prion Poker, are you all in?

Safe laboratory management of prions and proteopathic seeds and Prion Poker, are you all in?

CORRESPONDENCE| VOLUME 20, ISSUE 12, P981, DECEMBER 01, 2021

Safe laboratory management of prions and proteopathic seeds

Simon Mead Thomas Evans

on behalf of the Advisory Committee for Dangerous Pathogens Transmissible Spongiform Encephalopathy Subgroup Published:December, 2021DOI: https://doi.org/10.1016/S1474-4422(21)00379-3

Prions, the infectious agents of fatal and transmissible neurodegenerative disorders in humans and animals, are comprised of assemblies of misfolded forms of prion protein (PrP). The death of a 33-year-old researcher of prion diseases from variant Creutzfeldt-Jakob disease (ie, the strain of disease that is derived from bovine spongiform encephalopathy) 9 years after a percutaneous exposure to prion-contaminated material, and the death from or diagnosis of prion disease in two other people in Europe after working in prion research, emphasises the importance of statutory guidance for laboratory safety when working with dangerous pathogens.1 People in numerous laboratories handling diagnostic blood, CSF, and other low-risk biofluid samples from patients with or suspected to have Creutzfeldt-Jakob disease have contacted us to suggest that the existing guidance was not sufficiently clear or proportionate.

Evidence has accrued for the potential for proteins that are linked to neurodegenerative diseases, other than PrP, to adopt abnormal conformations, self-propagate, and cause transmissible pathologies and diseases in humans and laboratory animals.2, 3 These proteins share a range of pathological properties but are also distinct from prions in important ways, including that there are no known animal or human epidemics or established occupational risks. Experiments that involve inoculating, concentrating, or synthesising these so-called proteopathic seeds have become routine in the past decade, but no statutory guidance is available for safety. Human–human transmission of amyloid β proteopathic seeds has been observed in some specific circumstances that were also shown to transmit prion infection (eg, use of cadaver-derived human pituitary hormones or dura mater in neurosurgery) and can cause iatrogenic cerebral amyloid angiopathy and fatal brain haemorrhage after long latencies.4 The popularity of this field of research, and the long latencies that are to be expected for diseases that are caused by these proteopathic seeds, mean that occupational exposures might not yet have resulted in any clinical consequences. It is prudent, therefore, to consider potential risks from laboratory work involving these agents.

The UK's Advisory Committee for Dangerous Pathogens convened a subgroup to revise guidance for safe working with prions and to consider whether any measures were needed for work with proteopathic seeds, involving experts from research laboratories for prion and other neurodegenerative diseases, infectious disease specialists, pathologists, veterinarians, and health and safety experts. In the new guidance, we emphasise a distinction between high-risk CNS tissues and research samples that contain high concentrations of prions, which need to be managed in specialised laboratories with strict policies, and low-risk biofluids, such as blood and CSF, from patients who are suspected to have Creutzfeldt-Jakob disease with no or low concentrations of prions, which can be managed in a high-throughput diagnostic laboratory setting through adherence to appropriate general laboratory practices. We also concluded that the poorly defined pathogenicity in humans of proteopathic seeds when prepared in concentrated forms for biochemical, structural, or transmission studies means that they should now be considered as hazard group 2 pathogens, necessitating work in a containment level 2 facility. We recommend a range of safety measures,5 including special attention to risk assessment and staff training; recording of accidental exposures; special caution with the use of any sharp tools to avoid percutaneous injury; work inside a microbiological safety cabinet; and the use of spill trays, absorbent material, and defined procedures to decontaminate equipment and spills to avoid contamination of the laboratory environment.

Importantly, we do not recommend any changes to existing procedures for the routine handling of tissues and biofluids from patients with non-prion neurodegenerative conditions for diagnostic or research purposes. We hope that this new guidance will be seen as proportionate and precautionary and help organisations to have increased confidence about the safety of their employees.5

We declare no competing interests. Members of the Advisory Committee for Dangerous Pathogens Transmissible Spongiform Encephalopathy Subgroup are listed in the appendix.




Friendly fire, pass it forward, they call it iatrogenic cjd, or what i call 'tse prion poker', are you all in $$$

all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, proven, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd, PLUS, SPORADIC CJD HAS NOW BEEN LINKED TO ATYPICAL AND TYPICAL BSE, SCRAPIE, AND NOW CWD. ...terry 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Background 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.

Methods

Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.

Results

I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.

Conclusions

There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.

end...Terry S. Singeltary Sr.

Ann N Y Acad Sci. 1982;396:131-43.

Alzheimer's disease and transmissible virus dementia (Creutzfeldt-Jakob disease).

Brown P, Salazar AM, Gibbs CJ Jr, Gajdusek DC.

Abstract

Ample justification exists on clinical, pathologic, and biologic grounds for considering a similar pathogenesis for AD and the spongiform virus encephalopathies. However, the crux of the comparison rests squarely on results of attempts to transmit AD to experimental animals, and these results have not as yet validated a common etiology. Investigations of the biologic similarities between AD and the spongiform virus encephalopathies proceed in several laboratories, and our own observation of inoculated animals will be continued in the hope that incubation periods for AD may be even longer than those of CJD.

https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1982.tb26849.x

http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1982.tb26849.x/abstract
CJD1/9 0185 Ref: 1M51A

IN STRICT CONFIDENCE

Dr McGovern From: Dr A Wight Date: 5 January 1993 Copies: Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES

1. CMO will wish to be aware that a meeting was held at DH yesterday, 4 January, to discuss the above findings. It was chaired by Professor Murray (Chairman of the MRC Co-ordinating Committee on Research in the Spongiform Encephalopathies in Man), and attended by relevant experts in the fields of Neurology, Neuropathology, molecular biology, amyloid biochemistry, and the spongiform encephalopathies, and by representatives of the MRC and AFRC. 2. Briefly, the meeting agreed that:

i) Dr Ridley et als findings of experimental induction of p amyloid in primates were valid, interesting and a significant advance in the understanding of neurodegenerative disorders;

ii) there were no immediate implications for the public health, and no further safeguards were thought to be necessary at present; and

iii) additional research was desirable, both epidemiological and at the molecular level. Possible avenues are being followed up by DH and the MRC, but the details will require further discussion. 93/01.05/4.1
BSE101/1 0136
IN CONFIDENCE

5 NOV 1992 CMO From: Dr J S Metters DCMO 4 November 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES

1. Thank you for showing me Diana Dunstan's letter. I am glad that MRC have recognized the public sensitivity of these findings and intend to report them in their proper context. This hopefully will avoid misunderstanding and possible distortion by the media to portray the results as having more greater significance than the findings so far justify.

2. Using a highly unusual route of transmission (intra-cerebral injection) the researchers have demonstrated the transmission of a pathological process from two cases one of severe Alzheimer's disease the other of Gerstmann-Straussler disease to marmosets. However they have not demonstrated the transmission of either clinical condition as the "animals were behaving normally when killed'. As the report emphasizes the unanswered question is whether the disease condition would have revealed itself if the marmosets had lived longer. They are planning further research to see if the conditions, as opposed to the partial pathological process, is transmissible. What are the implications for public health?

3. The route of transmission is very specific and in the natural state of things highly unusual. However it could be argued that the results reveal a potential risk, in that brain tissue from these two patients has been shown to transmit a pathological process. Should therefore brain tissue from such cases be regarded as potentially infective? Pathologists, morticians, neuro surgeons and those assisting at neuro surgical procedures and others coming into contact with "raw" human brain tissue could in theory be at risk. However, on a priori grounds given the highly specific route of transmission in these experiments that risk must be negligible if the usual precautions for handling brain tissue are observed.

92/11.4/1-1 BSE101/1 0137

4. The other dimension to consider is the public reaction. To some extent the GSS case demonstrates little more than the transmission of BSE to a pig by intra-cerebral injection. If other prion diseases can be transmitted in this way it is little surprise that some pathological findings observed in GSS were also transmissible to a marmoset. But the transmission of features of Alzheimer's pathology is a different matter, given the much greater frequency of this disease and raises the unanswered question whether some cases are the result of a transmissible prion. The only tenable public line will be that "more research is required" before that hypothesis could be evaluated. The possibility on a transmissible prion remains open. In the meantime MRC needs carefully to consider the range and sequence of studies needed to follow through from the preliminary observations in these two cases. Not a particularly comfortable message, but until we know more about the causation of Alzheimer's disease the total reassurance is not practical.

JS METTERS Room 509 Richmond House Pager No: 081-884 3344 Callsign: DOH 832 121/YdeS 92/11.4/1.2
BSE101/1 0136

IN CONFIDENCE

CMO

From: Dr J S Metters DCMO

4 November 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES
CJD1/9 0185
Ref: 1M51A

IN STRICT CONFIDENCE

From: Dr. A Wight Date: 5 January 1993

Copies:

Dr Metters Dr Skinner Dr Pickles Dr Morris Mr Murray

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES
 ''LINE TO TAKE"
6. Trouble has been brewing for some time. Dr Collinge is lobbying hard, and threatening to go to the media, claiming Dr Will is blocking his research...
snip...
[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. There are also results to be made available shortly (1) concerning a farmer with CJD who had BSE animals, (2) on the possible transmissibility of Alzheimer’s and (3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]
Tuesday, November 26, 2013

Transmission of multiple system atrophy prions to transgenic mice

‘’Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions.’’

http://www.pnas.org/content/110/48/19555.abstract.html
Transmission of a neurodegenerative disorder from humans to mice

The findings suggest that the α-synuclein deposits that form in the brains of patients with MSA behave like prions and are transmissible under certain circumstances, according to the authors. — N.Z.

α-Synuclein deposits in the brainstems of inoculated mice.

https://www.pnas.org/content/pnas/110/48/19175.full.pdf
Expanding spectrum of prion diseases

Jacob I. Ayers; Nick A. Paras; Stanley B. Prusiner 

Emerg Top Life Sci (2020) 4 (2): 155–167.


Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for β-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aβ and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.

Keywords:α-synuclein, amyloid beta, neurodegeneration, prion, tau proteins 

Subjects:Aging, Molecular Bases of Health & Disease, Neuroscience


least we forget...

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery *** 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892. Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 


Alzheimer's disease

let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 

Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy





Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 

*** Singeltary comment PLoS *** 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Posted by flounder on 05 Nov 2014 at 21:27 GMT 


re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015)


Singeltary Comment at very bottom of this Nature publishing;

re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy

I would kindly like to comment on the Nature Paper, the Lancet reply, and the newspaper articles.

First, I applaud Nature, the Scientist and Authors of the Nature paper, for bringing this important finding to the attention of the public domain, and the media for printing said findings.

Secondly, it seems once again, politics is getting in the way possibly of more important Transmissible Spongiform Encephalopathy TSE Prion scientific findings. findings that could have great implications for human health, and great implications for the medical surgical arena. but apparently, the government peer review process, of the peer review science, tries to intervene again to water down said disturbing findings.

where have we all heard this before? it's been well documented via the BSE Inquiry. have they not learned a lesson from the last time?

we have seen this time and time again in England (and other Country's) with the BSE mad cow TSE Prion debacle.

That 'anonymous' Lancet editorial was disgraceful. The editor, Dick Horton is not a scientist.

The pituitary cadavers were very likely elderly and among them some were on their way to CJD or Alzheimer's. Not a bit unusual. Then the recipients ? 

who got pooled extracts injected from thousands of cadavers ? were 100% certain to have been injected with both seeds. No surprise that they got both diseases going after thirty year incubations.

That the UK has a "system in place to assist science journalists" to squash embargoed science reports they find 'alarming' is pathetic.

Sounds like the journalists had it right in the first place: 'Alzheimer's may be a transmissible infection' in The Independent to 'You can catch Alzheimer's' in The Daily Mirror or 'Alzheimer's bombshell' in The Daily Express

if not for the journalist, the layperson would not know about these important findings.

where would we be today with sound science, from where we were 30 years ago, if not for the cloak of secrecy and save the industry at all cost mentality?

when you have a peer review system for science, from which a government constantly circumvents, then you have a problem with science, and humans die.

to date, as far as documented body bag count, with all TSE prion named to date, that count is still relatively low (one was too many in my case, Mom hvCJD), however that changes drastically once the TSE Prion link is made with Alzheimer's, the price of poker goes up drastically.

so, who makes that final decision, and how many more decades do we have to wait?

the iatrogenic mode of transmission of TSE prion, the many routes there from, load factor, threshold from said load factor to sub-clinical disease, to clinical disease, to death, much time is there to spread a TSE Prion to anywhere, but whom, by whom, and when, do we make that final decision to do something about it globally? how many documented body bags does it take? how many more decades do we wait? how many names can we make up for one disease, TSE prion?

Professor Collinge et al, and others, have had troubles in the past with the Government meddling in scientific findings, that might in some way involve industry, never mind human and or animal health.

FOR any government to continue to circumvent science for monetary gain, fear factor, or any reason, shame, shame on you.

in my opinion, it's one of the reasons we are at where we are at to date, with regards to the TSE Prion disease science i.e. money, industry, politics, then comes science, in that order.

greed, corporate, lobbyist there from, and government, must be removed from the peer review process of sound science, it's bad enough having them in the pharmaceutical aspect of healthcare policy making, in my opinion.

my mother died from confirmed hvCJD, and her brother (my uncle) Alzheimer's of some type (no autopsy?). just made a promise, never forget, and never let them forget, before I do.

I kindly wish to remind the public of the past, and a possible future we all hopes never happens again. ...

[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. There are also results to be made available shortly (1) concerning a farmer with CJD who had BSE animals, (2) on the possible transmissibility of Alzheimer's and (3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]

Singeltary Comment at very bottom of this Nature publishing;


TUESDAY, JUNE 1, 2021 

Alzheimer’s disease neuropathological change three decades after iatrogenic amyloid-β transmission


Wednesday, July 28, 2021 

France issues moratorium on prion research after fatal brain disease strikes two lab workers


Thursday, July 29, 2021 

TSE PRION OCCUPATIONAL EXPOSURE VIA ANIMAL OR HUMAN, iatrogenic transmission, nvCJD or sCJD, what if? 


Tuesday, December 15, 2020

Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns


Wednesday, December 16, 2020 

Expanding spectrum of prion diseases Prusiner et al


TUESDAY, OCTOBER 6, 2020 

Potential human transmission of amyloid β pathology: surveillance and risks


SATURDAY, AUGUST 01, 2020 

Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993–2018 high proportion of physicians with sCJD were surgeons

MONDAY, APRIL 8, 2019 

Studies Further Support Transmissibility of Alzheimer Disease–Associated Proteins


SUNDAY, MAY 26, 2019 

Arguments for Alzheimer’s and Parkinson’s diseases caused by prions Stanley B. Prusiner 

''From a large array of bioassays, we conclude that AD, PD, MSA, and the frontotemporal dementias, including PSP and CBD, are all prion diseases''


THURSDAY, FEBRUARY 7, 2019 

In Alzheimer's Mice, Decades-Old Human Cadaveric Pituitary Growth Hormone Samples Can Transmit and Seed Amyloid-Beta Pathology


Subject: CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?

REVIEW

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

Saturday, February 2, 2019 

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?


SATURDAY, MARCH 16, 2019 

Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff Document issued on March 15, 2019 Singeltary Submission


TUESDAY, APRIL 09, 2019 

Horizon Health Network Moncton Hospital notified more than 700 patients after two cases of CJD were diagnosed both patients had undergone cataracts surgery before being diagnosed


Friday, January 29, 2016

Synucleinopathies: Past, Present and Future, iatrogenic, what if?



FRIDAY, JANUARY 10, 2014

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

Greetings Friends, Neighbors, and Colleagues,

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

Confucius is confused again.

I was just sitting and thinking about why there is no genetic link to some of these TSE prion sGSS, sFFi, and it’s really been working on my brain, and then it hit me today.

what if, vpspr, sgss, sffi, TSE prion disease, was a by-product from iatrogenic gss, ffi, familial type prion disease ???

it could explain the cases of no genetic link to the gss, ffi, familial type prion disease, to the family.

sporadic and familial is a red herring, in my opinion, and underestimation is spot on, due to the crude prehistoric diagnostic procedures and criteria and definition of a prion disease.

I say again, what if, iatrogenic, what if, with all these neurological disorders, with a common denominator that is increasingly showing up in the picture, called the prion.

I urge all scientist to come together here, with this as the utmost of importance about all these neurological disease that are increasingly showing up as a prion mechanism, to put on the front burners, the IATROGENIC aspect and the potential of transmission there from, with diseases/disease??? in question.

by definition, could they be a Transmissible Spongiform Encephalopathy TSE prion type disease, and if so, what are the iatrogenic chances of transmission?

this is very important, and should be at the forefront of research, and if proven, could be a monumental breakthrough in science and battle against the spreading of these disease/diseases.

the US National Library of Medicine National Institutes of Health pub-med site, a quick search of the word SPORADIC will give you a hit of 40,747. of those, there are a plethora of disease listed under sporadic. sporadic simply means (UNKNOWN).


the US National Library of Medicine National Institutes of Health pub-med site, a quick search of the word FAMILIAL will give you a hit of 921,815. of those, there are a plethora of disease listed under familial.


again, sporadic and familial is a red herring, in my opinion.

also, in my opinion, when you start have disease such as sporadic Fatal Familial Insomnia, (and or sporadic GSS, or the VPSPr type prion disease), and there is NO familial genetic linkage to the family of the diseased, I have serious questions there as to a familial type disease, and thus, being defined as such.

snip...see full text;

Friday, January 10, 2014

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???





Sunday, August 8, 2010

The Transcellular Spread of Cytosolic Amyloids, Prions, and Prionoids



SEAC OCTOBER 2009

Are some commoner types of neurodegenerative disease (including Alzheimer's disease and Parkinson's disease) also transmissible? Some recent scientific research has suggested this possibility

http://www.seac.gov.uk/pdf/hol-response091008.pdf




TUESDAY, AUGUST 03, 2021 

USA Tables of Cases Examined National Prion Disease Pathology Surveillance Center Cases Examined July 9th, 2021

P1-187 AGED CATTLE BRAIN DISPLAYSALZHEIMER’S-LIKE PATHOLOGY THATCAN BE PROPAGATED IN A PRION-LIKE MANNER

Ines Moreno-Gonzalez1, George A. Edwards, III,1, Nazaret Gamez Ruiz1,Priyadarshini Peter1, Rodrigo Morales1, Mercedes Marquez2, Marti Pumarola2,Claudio Soto1,1The University of Texas Health Science Center at Houston, Houston, TX, USA;2Animal Tissue Bank of Catalunya (BT A C), Universidad Autonoma de Barcelona, Barcelona, Spain . Contact e-mail: Ines.M.Gonzalez@uth.tmc.edu

Background: Amyloid beta (Ab) and hyperphosphorylated tau(ptau) are the proteins undergoing misfolding in Alzheimer’s dis-ease (AD). Recent studies have shown that brain homogenates rich in amyloid aggregates are able to seed the misfolding and ag-gregation of amyloidogenic proteins inducing an earlier onset of the disease in mouse models of AD. This seeding behavior is analogous to the disease transmission by propagation of prion protein misfold-ing observed in prion diseases. Prion diseases can be transmitted across species by inoculation of the misfolded prion protein from one specie into an appropriate host. For example, material from cattle affected by bovine spongiform encephalopathy can be propagate in humans inducing variant Creutzfeldt-Jakob disease.

Methods: In this study, we analyzed the presence of AD-related protein aggre-gates in the brain of old cows and investigated whether these aggregates are capable to induce pathology in animal models of AD.

Results: We observed that many of the typical hallmarks detected in human AD brains, including Ab aggregates and tangles, were present in cow brains. When cattle tissue containing Ab aggregates or ptau were intracerebrally inoculated into APP/PS1 or P301Smice, we observed an acceleration of brain misfolded protein deposition and faster cognitive impairment compared to controls. How-ever, when the material was orally inoculated, no effect was observed.

Conclusions: These results may contribute to uncover a previously unsuspected etiology surrounding some cases of spo-radic AD. However, the early and controversial stage of the field of prion-like transmission in non-prion diseases added to the artificial nature of the animal models utilized for these studies, indicate that extrapolation of the results to humans should not be done without further experiments.


P75 Determining transmissibility and proteome changes associated with abnormal bovine prionopathy 

Dudas S (1,2), Seuberlich T (3), Czub S (1,2) 

In prion diseases, it is believed that altered protein conformation encodes for different pathogenic strains. Currently 3 different strains of bovine spongiform encephalopathy (BSE) are confirmed. Diagnostic tests for BSE are able to identify animals infected with all 3 strains, however, several diagnostic laboratories have reported samples with inconclusive results which are challenging to classify. It was suggested that these may be novel strains of BSE; to determine transmissibility, brain material from index cases were inoculated into cattle. 

In the first passage, cattle were intra-cranially challenged with brain homogenate from 2 Swiss animals with abnormal prionopathy. The challenged cattle incubated for 3 years and were euthanized with no clinical signs of neurologic disease. Animals were negative when tested on validated diagnostic tests but several research methods demonstrated changes in the prion conformation in these cattle, including density gradient centrifugation and immunohistochemistry. Currently, samples from the P1 animals are being tested for changes in protein levels using 2-D Fluorescence Difference Gel Electrophoresis (2D DIGE) and mass spectrometry. It is anticipated that, if a prionopathy is present, this approach should identify pathways and targets to decipher the source of altered protein conformation. In addition, a second set of cattle have been challenged with brain material from the first passage. Ideally, these cattle will be given a sufficient incubation period to provide a definitive answer to the question of transmissibility. 

=====prion 2018=== 

Prion Conference 2018

Sunday, February 25, 2018 

PRION ROUND TABLE CONFERENCE 2018 MAY, 22-25 A REVIEW


Terry S. Singeltary Sr. <flounder9@verizon.net>