Friday, October 20, 2023

An investigation has been opened into the death of a scientist who was studying a transmissible and deadly disease CJD in Spain

DEGENERATIVE DISEASES

An investigation has been opened into the death of a scientist who was studying a transmissible and deadly disease in Spain 

Three institutions are trying to ascertain the origin of the infectious Creutzfeldt-Jakob disease samples discovered in the biochemist’s laboratory. The 45-year-old investigator died in 2022

The University of Barcelona’s School of Medicine, in L’Hospitalet de Llobregat, where laboratory 4141 is located.

MASSILIANO MINOCRI

Manuel Ansede

MANUEL ANSEDE

Madrid - OCT 19, 2023 - 16:15 EDT

A prestigious Spanish researcher of Creutzfeldt-Jakob disease died last year after experiencing symptoms consistent with this deadly ailment, as EL PAÍS has learned from multiple sources at the three institutions involved. Three months ago, the University of Barcelona opened an internal investigation to ascertain the origin of thousands of unauthorized samples, some of them infectious, discovered in a freezer in its laboratory 4141, where the deceased biochemist worked. He was a member of the Bellvitge Biomedical Research Institute (IDIBELL) and the CIBER public consortium. These two institutions have joined the internal investigation, after noting concern among colleagues at the facility, who did not know the level of risk to which they were exposed without their knowledge. This neurodegenerative disease incubates silently for years, but when symptoms appear — rapid dementia and muscle stiffness — it is fatal. Life expectancy after diagnosis is barely six months. Its best-known animal equivalent is mad cow disease.

The biochemist joined the 4141 lab at the University of Barcelona in January 2018 as a principal investigator with a group of his own; his wife joined shortly after. Together, they identified characteristic substances in human cerebrospinal fluid, useful for the diagnosis of rapid dementia. In November 2020, the now deceased scientist began to feel unwell and asked to leave. After his colleagues found out that his symptoms were consistent with Creutzfeldt-Jakob disease, he demanded absolute privacy and decided to hide his diagnosis, according to the sources consulted for this article. He died at the age of 45.

On December 18, 2020, the head of the 4141 laboratory, Isidre Ferrer, a professor of Pathology at the University of Barcelona and a member of IDIBELL, informed the directors of both institutions that suspicious samples of cerebrospinal fluid from people with Creutzfeldt-Jakob disease and other neurodegenerative types of dementia had been discovered by chance in a freezer at 80 degrees below zero, according to internal documentation to which EL PAÍS had access. The thousands of unauthorized samples from patients and animals were in a drawer reserved for the sick researcher’s group and lacked records indicating their presence. The University of Barcelona then ordered the immediate closure and decontamination of laboratory 4141, located in the School of Medicine at L’Hospitalet de Llobregat.

Doctor Gabriel Capellá, the director of IDIBELL, explains that they have identified “a maximum of eight people” who worked in the laboratory at that time, in addition to the deceased scientist and Isidre Ferrer. Some of these coworkers have required months of psychological care. The university’s safety office and IDIBELL’s prevention service determined that there was “an unacceptable risk,” although Capellá emphasizes that “there is no record of any occupational accident” in which a researcher could have been infected with contaminated material. Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies are caused by abnormal proteins called prions, which accumulate in the brain and cause a microscopic sponge-like appearance. There are only one or two cases per million inhabitants, the vast majority of which are of unknown cause, but cases of the disease have also been reported after contact with surgical instruments contaminated by these prions.

The three institutions involved took more than two years to send the suspect samples for analysis to a specialized center, the CIC bioGUNE, in Derio, Spain. A spokeswoman for the University of Barcelona says that they sent them in December 2022 and the three organizations received the results in March 2023. Four months later, in July, the legal departments at the three institutions finally informed the 4141 laboratory workers that the Creutzfeldt-Jakob disease samples were potentially infectious, as feared. “You can debate whether we have been quick [in our response] or not, but we have been transparent. We are [part of] three institutions that had to agree, and we have acted as guarantors,” says Capellá. A similar situation also occurred in France; following the death of a researcher from Creutzfeldt-Jakob in 2019 and the discovery of another suspected case, all public laboratories investigating prion diseases decided to temporarily close in July 2021 to review their protocols.

Laboratory 4141 was not equipped to handle high biohazard samples. It did not even have a biosafety hood. At the end of 2018, the CIBER public consortium signed an agreement so that the group could work with these dangerous samples at the high-security laboratory of the Animal Health Research Center (CReSA) in Bellaterra, Spain, near Barcelona. According to the sources we consulted, there was no reason to have the contaminated material in laboratory 4141, beyond saving time during experiments, since the CReSA bunker is 30 kilometers (about 19 miles) away and required waiting one’s turn to use. Isidre Ferrer, the head of the facility at the time, who has since retired, prefers not to comment on the case until the internal investigation is completed, but he emphasizes that he was unaware of the existence of these dangerous samples.

The IDIBELL director recalls that the deceased scientist was “a promising and brilliant researcher.” From 2013 to 2017, he worked at the University Medical Center of Göttingen (Germany) under neurologist Inga Zerr, a leading international expert in Creutzfeldt-Jakob disease. Physician Margarita Blázquez, who manages the CIBER public consortium, notes that the disease’s incubation period can last several years, so, if the deceased researcher really had it, he also could have become infected with it in Germany or at another of his previous laboratories. This newspaper has tried to contact the scientist’s widow via email but has not received a response. She asked to be discharged shortly after her husband did. The three institutions are now investigating whether the couple handled the dangerous samples without authorization in lab 4141. A third person affiliated with CIBER, a member of the now-deceased biochemist’s research group, worked with potentially infectious Creutzfeldt-Jakob samples without being informed that they were infectious.

The security office of the University of Barcelona believes that the samples would only have been a problem in the case of accidental inoculation or ingestion while handling them. But internal documents confirm the alarm the situation has caused on campus. “The laboratory technicians and investigators express their enormous concern about the fact that, so far, it has not been possible to determine the origin of the doctor’s illness. They are left to worry about whether they may suffer the same fate in a few years’ time as a result of uncontrolled contamination that may have been created in the laboratory,” according to the minutes of a December 22, 2020, meeting between workers and Carles Solsona, the director of the Department of Pathology at the University of Barcelona. “This fear causes them to suffer a state of permanent anguish, causing insomnia and irritability.”

The IDIBELL director sent a message to the center’s entire staff on the 11th, five days after EL PAÍS informed him that it was investigating the case. Gabriel Capellá then told his workers of “a very serious incident that became known on campus for the first time at the end of 2020.″ With “deep dismay,” Capellá announced the researcher’s death “due to a possible prion condition,” with “a possible iatrogenic [a disease acquired by contact with contaminated materials during a medical procedure].” The director also reported finding “potentially dangerous samples” in a freezer. “Our priority is to ensure that this situation is handled rigorously and transparently to limit the damage to the reputation of our institutions,” he said.

Do you have more information about this case or other similar ones? You can write to us at mansede@elpais.es.

Sign up for our weekly newsletter to get more English-language news coverage from EL PAÍS USA Edition


Friendly fire, pass it forward, they call it iatrogenic cjd, or what i call 'tse prion poker', are you all in $$$

all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, proven, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd...

Direct neural transmission of vCJD/BSE in macaque after finger incision CORRESPONDENCE

Direct neural transmission of vCJD/BSE in macaque after finger incision

Jacqueline Mikol1 · Jérôme Delmotte1 · Dolorès Jouy1 · Elodie Vaysset1 · Charmaine Bastian1 · Jean‑Philippe Deslys1 ·

Emmanuel Comoy1 Received: 10 July 2020 / Revised: 8 September 2020 / Accepted: 25 September 2020 / Published online: 6 October 2020 © The Author(s) 2020

Non-human primates appeared as the closest model to study human iatrogenic prion diseases [14]: we report here the consequences of variant Creutzfeldt–Jakob disease/bovine spongiform encephalopathy (vCJD/BSE) inoculation in a cynomolgus macaque finger, with the demonstration of an original mode of propagation and the practical risk for professional exposure.

The distal right middle finger handpad of a 4-year-old macaque was incised on both lateral sides to induce local inflammation, and then injected with the equivalent of 10 mg of a BSE, orally challenged macaque brain [18]. After an 18 months period of finger clumsiness, the clinical disease (behaviour abnormalities, fear, hyperesthesia, gait disturbances, shaking) began 7.5 years after inoculation and euthanasia took place 2 months later for welfare reasons. Motor conduction velocity of the right median nerve was reduced to one-third of the left counterpart and sensory potential was not detected.

Histological and biochemical studies were performed as previously described. All the elements of the triad were present [7–9]: spongiform change was moderate in neocortex, striatum, brain stem, mild in spinal cord but severe in thalamus and cerebellum; neuronal loss was globally moderate, but severe in cerebellum and sacral spinal cord (vacuolated neurons); gliosis was severe in thalamus, cerebellum and brain stem and moderate elsewhere (Supplementary Fig. 1). ELISA and western blot (WB) showed the expected accumulation of PrPres with BSE glycophoretic pattern at all levels of brain and spinal cord (Supplementary Fig. 2).

In the brain, PrPd deposits were laminar into the cortical deep layers, massive into thalamus, basal ganglia, cerebellum, and brain stem. In spinal cord, PrPd was symmetrically distributed, intense in the Substantia gelatinosa and nucleus dorsal of Clarke while decreased at sacral level. Deposits were diverse into the whole CNS: synaptic, perineuronal, reticular aggregates, mini-plaques, plaques, and incomplete florid plaques. The retinal plexiform layers were labelled (Supplementary Fig. 1i). There were no amyloid or tau deposits.

Unusual PrPd deposits were observed along dendrites, short and long axons, neuritic threads tracing fne networks of straight lines or like strings of pearls (Supplementary Fig. 3). They were present into deep neocortex, basal ganglia, and motoneurons. Such long processes are not frequent but have been reported in human [13] and experimental studies [10, 22]. PrPd deposits were also noted as very mild into striato-pallidal projections, both limbs of internal capsule and fornix (Supplementary Fig. 3). The presence of PrPd in white matter has been reported (Supplementary text 4).

Peripherally, the expected PrPd was undetectable in lymphoid organs, including spleen, through biochemical or immunohistochemical analyses, while prion replication was detected in the peripheral nervous system (PNS): PrPd staining was visualized in many dorsal root ganglia (DRG) but only in nerves innervating the forelimb site of injection (median and ulnar nerves). At the cellular level, PrPd was limited to ganglia and satellite cells in DRG and Schwann cells (Scs) all along nerves whereas axons were never labelled (Fig. 1). Previously, using postmortem immunohistochemical studies (listed in Supplementary text 5), PrPd has been shown in peripheral nervous system in all forms of human neuropathies, albeit more frequently in vCJD, mostly in posterior root nerve fbres at adaxonal location and/or in ganglion and satellite cells. The restricted amount of PrPd was repeatedly underlined but, recently, prion RTQuiC was positive in all nerves examined [2]. PrPd has also been described, frst in scrapie [17] then in BSE, as limited “adaxonal deposits” or/and Sc deposits, with or without DRG cell involvement (review in [4] and Supplementary text 6). Previous studies of the mode of propagation of PrPd have reported variable observations and analyses depending on strains, host species and genotype (Supplementary text 6); the authors discussed the role of the sensory route of trafficking of prions, the modifications of axonal transport, the centrifugal versus centripetal spread of PrPd .

After peripheral infection, accumulation of infectious agent is reputed to occur in lymphoid tissues before direct neuroinvasion [18, 19], even with very little apparent peripheral lymphoreticular deposition [6, 20]. Here, there is no apparent replication/amplification of vCJD/BSE agent in the lymphoid tissues of the exposed macaque. In this model, the neural contamination occurred directly in the highly innervated finger while neuroinvasion appears to occur in Scs along the median nerve to the DRG, with the appearance of the classical labelling of ganglion cells which indicates the onset of the first level of neuronal infection. This model provides direct evidence of the hypothesis of a sequential infection of Scs from the periphery to the CNS, followed by a secondary diffusion into the spinal cord, as already considered by our group [15] and others [1, 3, 11, 12, 21]. It is to note that studies based on intra-sciatic nerve injections in hamsters [16] and transgenic mice [12] had established a rate of transport of infectivity of, respectively, 0.5–2 mm and 0.7 mm per day. This key role of Scs could explain both the low speed of propagation and the discrepancy between the paucity of PrPd into the distal part of the sensory nerves followed by the positivity of DRG, satellite cells and proximal roots.

In conclusion, we have observed that the exposure of a primate to vCJD/BSE through a distal finger lesion induces, after more than 7.5 years of silent incubation, a massive deposit of PrPd , strictly restricted to the nervous system and the eye.

Our data suggest a new type of pure unique peripheral nervous contamination in which the Scs would have a major role in the mode of centripetal progression of PrPd in the peripheral nervous system. Moreover, considering the fact that, recently, “a variant CJD diagnosed 7.5 years after occupational exposure” (cryomicrotomy) in a technician was observed [5], this experimental case report supports the risk linked to professional exposure and reinforces the necessity of adequate measures of prevention. 


Second death in France in a laboratory working on prions

Creutzfeldt-Jakob disease has killed a person who handled this infectious agent at Inrae in Toulouse. After a first death in 2019, a moratorium on work on this pathogen has been extended.

By Hervé Morin

Creutzfeldt-Jakob disease killed a few days ago a retired research technician from the National Research Institute for Agriculture, Food and the Environment (Inrae), who had worked in Toulouse in contact of biological tissue infected with prions. This death sows consternation and concern in the scientific community working with these infectious agents. It follows the death, on June 17, 2019, of Emilie Jaumain, a 33-year-old laboratory technician, suffering from the same incurable neurodegenerative disease. The young woman is said to have contracted it in 2010, cutting herself while handling fragments of the brains of mice infected with prions, in another unit of INRAE, in Jouy-en-Josas.

Computer representation of part of a prion protein on a light micrograph of pyramidal nerve cells (neurons, in black) in the cerebellum of the brain. ALFRED PASIEKA / SCIENCE PHOTO LIBRARY

Regarding the retiree from Toulouse, it will be necessary to determine whether she was the victim of a genetic or sporadic form of Creutzfeldt-Jakob disease, if the disease may have been caused by the ingestion of meat contaminated by the agent of encephalopathy. bovine spongiform (BSE, also called mad cow disease) or, as in the case of Emilie Jaumain, if accidental occupational exposure can be claimed. Prion diseases are caused by proteins taking an aberrant conformation, which gives them the property of replicating to form aggregates that are deleterious for neurons. There are around 150 cases per year in France, resulting in fatal degeneration of the central nervous system.


Temporary suspension of work on prions in French public research laboratories

PRESS RELEASE - The general directorates of ANSES, CEA, CNRS, INRAE ​​and Inserm, have decided jointly and in agreement with the Ministry of Higher Education, Research and Innovation to suspend as a precaution all their research and experimentation work relating to prion diseases, for a period of three months.

This precautionary measure is motivated by the knowledge of a possible new case of a person suffering from Creutzfeldt-Jakob disease and who worked in a laboratory for research on prions.

Posted on July 27, 2021

The suspension period put in place as of this day will make it possible to study the possibility of a link between the observed case and the person's former professional activity and to adapt, if necessary, the preventive measures in force in the research laboratories. 

The person with Creutzfeldt-Jakob disease (CJD)1, whose form is not yet known, is a retired INRAE ​​agent. This could be the second case of infectious CJD affecting a scientist who worked on prions, after that of an assistant engineer who died of the disease in 2019, and who was injured in 2010 during of an experiment.

Following this death, a general inspection mission was launched in July 2019 by the ministries of research and agriculture with French laboratories handling prions. Submitted in October 2020, the report concluded on the regulatory compliance of the laboratories visited as well as the presence of a risk control culture within the research teams.

Research around prion proteins, with high public health issues, allows major advances in the understanding of the functioning of these infectious pathogens, and contributes to results that are transferable to other related degenerative diseases such as Alzheimer's and Alzheimer's diseases. Parkinson's.

At the level of each establishment, regular and transparent information will be provided to all the working communities concerned by this measure.

1 The disease Creutzfeldt-Jakob disease (CJD) is one of prion diseases - still called encephalopathies subacute spongiform transmitted(TSE) - of diseases rare, characterized by a degeneration rapid and fatal the system nervous central. They are caused by the accumulation in the brain of a normally expressed protein but poorly conformed - the prion protein - which leads to the formation of deleterious aggregates for neurons. For now , no treatment will allow to change the course of these diseases. It can be of origin sporadic , form the most frequent , original genetic or finally to form infectious following a contamination. 



France issues moratorium on prion research after fatal brain disease strikes two lab workers

By Barbara CasassusJul. 28, 2021 , 4:35 AM

PARIS—Five public research institutions in France have imposed a 3-month moratorium on the study of prions—a class of misfolding, infectious proteins that cause fatal brain diseases—after a retired lab worker who handled prions in the past was diagnosed with Creutzfeldt-Jakob disease (CJD), the most common prion disease in humans. An investigation is underway to find out whether the patient, who worked at a lab run by the National Research Institute for Agriculture, Food and Environment (INRAE), contracted the disease on the job.

If so, it would be the second such case in France in the past few years. In June 2019, an INRAE lab worker named Émilie Jaumain died at age 33, 10 years after pricking her thumb during an experiment with prion-infected mice. Her family is now suing INRAE for manslaughter and endangering life; her illness had already led to tightened safety measures at French prion labs.

The aim of the moratorium, which affects nine labs, is to “study the possibility of a link with the [new patient’s] former professional activity and if necessary to adapt the preventative measures in force in research laboratories,” according to a joint press release issued by the five institutions yesterday.

“This is the right way to go in the circumstances,” says Ronald Melki, a structural biologist at a prion lab jointly operated by the French national research agency CNRS and the French Alternative Energies and Atomic Energy Commission (CEA). “It is always wise to ask questions about the whole working process when something goes wrong.” "The occurrence of these harsh diseases in two of our scientific colleagues clearly affects the whole prion community, which is a small 'familial' community of less than 1000 people worldwide," Emmanuel Comoy, deputy director of CEA's Unit of Prion Disorders and Related Infectious Agents, writes in an email to Science. Although prion research already has strict safety protocols, "it necessarily reinforces the awareness of the risk linked to these infectious agents," he says.

In Jaumain’s case, there is little doubt she was infected on the job, according to a paper published in The New England Journal of Medicine (NEJM) in 2020. She had variant CJD (vCJD), a form typically caused by eating beef contaminated with bovine spongiform encephalopathy (BSE), or mad cow disease. But Europe’s BSE outbreak ended after 2000 and vCJD virtually disappeared; the chance that someone of Jaumain’s age in France would contract food-borne vCJD is “negligible or non-existent,” according to the paper.

A scientist with inside knowledge says the new patient, a woman who worked at INRAE’s Host-Pathogen Interactions and Immunity group in Toulouse, is still alive. French authorities were apparently alerted to her diagnosis late last week. The press release suggests it’s not yet clear whether the new case is vCJD or “classic” CJD, which is not known to be caused by prions from animals. Classic CJD strikes an estimated one person per million. Some 80% of cases are sporadic, meaning they have no known cause, but others are genetic or contracted from infected human tissues during transplantations. The two types of CJD can only be distinguished through a postmortem examination of brain tissue.

Lab infections are known to occur with many pathogens, but exposure to CJD-causing prions is unusually risky because there are no vaccines or treatments and the condition is universally fatal. And whereas most infections reveal themselves within days or weeks, CJD’s average incubation period is about 10 years.

For Jaumain, who worked at INRAE’s Molecular Virology and Immunology Unit in Jouy-en-Josas, outside Paris, that long period of uncertainty began on 31 May 2010, when she stabbed her left thumb with a curved forceps while cleaning a cryostat—a machine that can cut tissues at very low temperatures—that she used to slice brain sections from transgenic mice infected with a sheep-adapted form of BSE. She pierced two layers of latex gloves and drew blood. “Émilie started worrying about the accident as soon as it had happened, and mentioned it to every doctor she saw,” says her widower, Armel Houel.

In November 2017, Jaumain developed a burning pain in her right shoulder and neck that worsened and spread to the right half of her body over the following 6 months, according to the NEJM paper. In January 2019, she became depressed and anxious, suffering memory impairment and hallucinations. “It was a descent into hell,” Houel says. She was diagnosed with “probable vCJD” in mid-March of that year and died 3 months later. A postmortem confirmed the diagnosis.

“The occurrence of these harsh diseases in two of our scientific colleagues clearly affects the whole prion community.” Emmanuel Comoy, French Alternative Energies and Atomic Energy Commission

INRAE only recently admitted the likely link between Jaumain’s illness and the accident. “We recognize, without ambiguity, the hypothesis of a correlation between Emilie Jaumain-Houel’s accident … and her infection with vCJD,” INRAE chair and CEO Philippe Mauguin wrote in a 24 June letter to an association created by friends and colleagues to publicize Jaumain’s case and lobby for improvements in lab safety. (Science has obtained a copy of the letter, which has not been made public.)

Jaumain’s family has filed both criminal charges and an administrative suit against INRAE, alleging a range of problems at Jaumain’s lab. She had not been trained in handling dangerous prions or responding to accidents and did not wear both metal mesh and surgical gloves, as she was supposed to, says Julien Bensimhon, the family’s lawyer. The thumb should have been soaked in a bleach solution immediately, which did not happen, Bensimhon adds.

Independent reports by a company specializing in occupational safety and by government inspectors have found no safety violations at the lab; one of them said there was a “strong culture” of risk management. (Bensimhon calls the reports “biased.”)

The government inspectors’ report concluded that Jaumain’s accident was not unique, however. There had been at least 17 accidents among the 100 or so scientists and technicians in France working with prions in the previous decade, five of whom stabbed or cut themselves with contaminated syringes or blades. Another technician at the same lab had a fingerprick accident with prions in 2005, but has not developed vCJD symptoms so far, Bensimhon says. “It is shocking that no precautionary measures were taken then to ensure such an accident never happened again,” he says.

In Italy, too, the last person to die of vCJD, in 2016, was a lab worker with exposure to prion-infected brain tissue, according to last year’s NEJM paper, although an investigation did not find evidence of a lab accident. That patient and the lab they worked at have not been identified.

After Jaumain’s diagnosis, “We contacted all the research prion labs in France to suggest they check their safety procedures and remind staff about the importance of respecting them,” says Stéphane Haïk, a neuroscientist at the Paris Brain Institute at Pitié-Salpêtrière Hospital who helped diagnose Jaumain and is the corresponding author on the paper. Many labs tightened procedures, according to the government inspectors' report, for instance by introducing plastic scissors and scalpels, which are disposable and less sharp, and bite and cut-resistant gloves. A team of experts from the five research agencies is due to submit proposals for a guide to good practice in prion research to the French government at the end of this year.

The scientific community has long recognized that handling prions is dangerous and an occupational risk for neuropathologists, says neuropathologist Adriano Aguzzi of the University of Zurich. Aguzzi declined to comment on the French CJD cases, but told Science his lab never handles human or bovine prions for research purposes, only for diagnostics. “We conduct research only on mouse-adapted sheep prions, which have never been shown to be infectious to humans,” Aguzzi says. In a 2011 paper, his team reported that prions can spread through aerosols, at least in mice, which “may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories,” they wrote. Aguzzi says he was “totally shocked” by the finding and introduced safety measures to prevent aerosol spread at his own lab, but the paper drew little attention elsewhere.

The moratorium will "obviously" cause delays in research, but given the very long incubation periods in prion diseases, the impact of a 3-month hiatus will be limited, Comoy says. His research team at CEA also works on other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and will shift some of its efforts to those.

Although Jaumain’s diagnosis upset many in the field, it hasn't led to an exodus among researchers in France, Haïk says: “I know of only one person who resigned because they were so worried.”

With reporting by Martin Enserink.

Posted in: EuropeHealthScientific Community

doi:10.1126/science.abl6587


Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

Variant Creutzfeldt–Jakob disease was identified in a technician who had cut her thumb while handling brain sections of mice infected with adapted BSE 7.5 years earlier. The long incubation period was similar to that of the transfusion-transmitted form of the disease.

Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

TO THE EDITOR:

We report a case of variant Creutzfeldt–Jakob disease (CJD) that was plausibly related to accidental occupational exposure in a technician who had handled murine samples contaminated with the agent that causes bovine spongiform encephalopathy (BSE) 7.5 years earlier.

In May 2010, when the patient was 24 years of age, she worked in a prion research laboratory, where she handled frozen sections of brain of transgenic mice that overexpressed the human prion protein with methionine at codon 129. The mice had been infected with a sheep-adapted form of BSE. During this process, she stabbed her thumb through a double pair of latex gloves with the sharp ends of a curved forceps used to handle the samples. Bleeding was noted at the puncture site.

In November 2017, she began having burning pain in the right shoulder and neck. The pain worsened and spread to the right half of her body during the following 6 months. In November 2018, an examination of a sample of cerebrospinal fluid (CSF) obtained from the patient was normal. Magnetic resonance imaging (MRI) of the brain showed a slight increase in the fluid-attenuated inversion recovery (FLAIR) signal in the caudates and thalami (Fig. S1A and S1B in the Supplementary Appendix, available with the full text of this letter at NEJM.org). In January 2019, she became depressed and anxious and had memory impairment and visual hallucinations. There was hypertonia on the right side of her body. At that time, an analysis of CSF for 14-3-3 protein was negative. In March 2019, MRI showed an increased FLAIR signal in pulvinar and dorsomedial nuclei of thalami (Fig. S1C through S1E).

Figure 1.

Detection of Abnormal Prion Protein in Biologic Fluid Samples and Postmortem Findings.

The patient was found to be homozygous for methionine at codon 129 of the prion protein gene without mutation. An analysis of a sample of CSF on real-time quaking-induced conversion analysis was negative for a diagnosis of sporadic CJD. However, an analysis of plasma and CSF by means of protein misfolding cyclic amplification was positive for the diagnosis of variant CJD (Figure 1A and 1B). The patient died 19 months after the onset of symptoms. Neuropathological examination confirmed the diagnosis of variant CJD (Figure 1C and 1D). Western blot analysis showed the presence of type 2B protease-resistant prion protein in all sampled brain areas. The clinical characteristics of the patient and the postmortem neuropathological features were similar to those observed in 27 patients with variant CJD who had previously been reported in France.1 (Additional details are provided in the Supplementary Appendix.)

There are two potential explanations for this patient’s condition. Oral transmission from contaminated cattle products cannot be ruled out because the patient was born at the beginning of the French BSE outbreak in cattle. However, the last two patients who had confirmed variant CJD with methionine homozygosity at codon 129 in France and the United Kingdom died in 2014 and 2013, respectively, which makes oral transmission unlikely. In France, the risk of variant CJD in 2019 was negligible or nonexistent in the post-1969 birth cohort.2

Percutaneous exposure to prion-contaminated material is plausible in this patient, since the prion strain that she had handled was consistent with the development of variant CJD.3 The 7.5-year delay between the laboratory accident and her clinical symptoms is congruent with the incubation period in the transfusion-transmitted form of the disease. The ability of this strain to propagate through the peripheral route has been documented, and experimental studies with scrapie strains have shown that scarification and subcutaneous inoculation are effective routes.4,5 The last known Italian patient with variant CJD, who died in 2016, had had occupational contact with BSE-infected brain tissues, although subsequent investigation did not disclose a laboratory accident (Pocchiari M, Italian Registry of CJD: personal communication). Thus, the last two cases of variant CJD outside the United Kingdom have been associated with potential occupational exposure. Such cases highlight the need for improvements in the prevention of transmission of variant CJD and other prions that can affect humans in the laboratory and neurosurgery settings, as outlined in the Supplementary Appendix.

Jean-Philippe Brandel, M.D. Assistance Publique–Hôpitaux de Paris, Paris, France

M. Bustuchina Vlaicu, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France

Audrey Culeux, B.Sc. INSERM Unité 1127, Paris, France

Maxime Belondrade, M.Sc. Daisy Bougard, Ph.D. Etablissement Français du Sang, Montpellier, France

Katarina Grznarova, Ph.D. Angeline Denouel, M.Sc. INSERM Unité 1127, Paris, France

Isabelle Plu, M.D. Elodie Bouaziz-Amar, Pharm.D., Ph.D. Danielle Seilhean, M.D., Ph.D. Assistance Publique–Hôpitaux de Paris, Paris, France

Michèle Levasseur, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France

Stéphane Haïk, M.D., Ph.D. INSERM Unité 1127, Paris, France stephane.haik@upmc.fr

Supported by a grant (ANR-10-IAIHU-06) from Programme d’Investissements d’Avenir and Santé Publique France.

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

5 References

July 2, 2020

N Engl J Med 2020; 383:83-85

DOI: 10.1056/NEJMc2000687

Metrics


34 year old Doctor Orthopedic Surgeon dies from CJD

Dr. Adam Thomas Dialectos

1987 - 2021

BORN

April 29, 1987

DIED

June 21, 2021

FUNERAL HOME

Bean Funeral Homes & Crematory Inc

1605 Rockland St

Reading, PA 19604

UPCOMING SERVICE

Visitation

Jun, 24 2021

9:00a.m. - 11:00a.m.

Saints Constantine & Helen Greek Orthodox Church

Send Flowers

Share

On Monday June 21, 2021, Dr. Adam Thomas Dialectos, loving husband, father, son, brother, uncle, Nouno, friend at the age of 34. Adam was born on April 29, 1987 in Reading, PA to Athan and Gretchen Dialectos. Adam was a 2005 graduate of Governor Mifflin High School, before receiving his degree in Health Sciences from James Madison University in 2009. Adam attended Philadelphia College of Osteopathic Medicine for medical school and his subsequent residency in orthopedic surgery. Adam was completing his Spine Surgery Fellowship at New England Baptist Hospital in Boston, Massachusetts. On February 7, 2019 Adam married the love of his life and girlfriend of 12 years, Lindsey (Schuler) Dialectos. They brought a beautiful baby boy into this world on January 6, 2021, Athananosis Adam Dialectos. Adam’s passion in life was unceasingly seeking to help others, emphasized by his desire to be a surgeon— a decision he made in his early elementary years. Adam continued this love of medicine throughout his life, which led to his achieving of the Henrietta and Jack Avart Memorial Award in 2019, awarded to the Orthopedic surgery resident who exhibited unparalleled excellence in their field during the residency program. This passion to learn, teach and support was truly understood through the patients whose lives Adam touched. When it came to his patients and coworkers, there was never a job too small for Adam. Those who knew Adam saw his personality shine through in so many other aspects of his life. Adam loved traveling. Some of his most memorable trips were with his wife, and countless snowboard trips with his brother, family, and friends. Adam loved everyone he was around; he loved and was loved by so many. Adam was truly one in a million. Adam is survived by his loving wife, Lindsey, and their son, Athan Adam; His father and mother, Athan and Gretchen; His brother Jordan and sister-in-law Megan, and their daughter Livia, Adam’s Goddaughter. His sister, Rachel, and her significant other, Bo Wagner. Furthermore, Adam is survived by his Yiayia, Joanne Dialectos, wife of the late George Dialectos; his Pop Pop, Donald Harford, husband of the late Nancy Servent; his Aunt Angel and Uncle Scott Helm; his Aunt Kelly and Uncle Darrell Markley. Adam was preceded in death by his Aunt Maria and Uncle Bob Care. Funeral Service will be held at Saints Constantine & Helen Greek Orthodox Church, 1001 East Wyomissing Blvd. Reading on Thursday June 24th. Father Theodore Petrides and Father Thomas L. Pappalas will officiate. Interment will follow at Charles Evans Cemetery. The family will receive relatives and friends at Saints Constantine & Helen Greek Orthodox Church from 9:00am to 11:00am with services beginning at 11:00. In lieu of flowers, contributions may be made to the CJD Foundation at 3634 West Market Street Suite 110 Akron, Ohio 44333 or cjdfoundation.org in remembrance of Dr. Adam Dialectos. Donations may also be made to Saints Constantine & Helen Greek Orthodox Church. Bean Funeral Home, 1605 Rockland Street, Hampden Heights, is in charge of arrangements and online condolences may be made at www.beanfuneralhomes.com.

To plant trees in memory, please visit our Sympathy Store.

Published by Reading Eagle from Jun. 22 to Jun. 24, 2021.


Our sincere condolences to the Family and Friends of Dr. Adam Thomas Dialectos. 

I can't help but ponder, as a Orthopedic Surgeon, Spine Surgery Fellowship, and what the good Doctors work curtailed, i can't help but think this is a potential case of iatrogenic CJD. surgery on humans, i would imagine cadavers as well.

all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, provern, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd. ...terry

least we forget...

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery *** 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892. Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

 
Saturday, December 18, 2021 

Direct neural transmission of vCJD/BSE in macaque after finger incision 


Tuesday, November 30, 2021 

Second death in France in a laboratory working on prions


Second lab worker with deadly prion disease prompts research pause in France

A lab worker died of prion disease in 2019, nine years after a lab accident.

BETH MOLE - 7/29/2021, 5:16 PM


A 2020 paper published in the New England Journal of Medicine left little doubt that Jaumain had been infected on the job. She had variant CJD, but since Europe’s ‘mad cow’ outbreak ended after 2000 and the disease virtually disappeared, the paper said it was virtually impossible for someone her age in France to contract food-borne vCJD.

Science also said two independent reports – one by government inspectors – had found no safety violations at the lab where Jaumain worked. The press release also noted that the inspectors concluded there was “the presence of a risk control culture within the research teams”. The Jaumain family’s lawyer called the neutrality of the reports into question, however.

At the same time, the government inspectors’ report also revealed that there had been at least 17 accidents among the 100 or so scientists and technicians in France working with prions in the previous decade, raising concerns about how effective this risk control culture is. Five of these occurred when workers “stabbed or cut themselves with contaminated syringes or blades”.


Wednesday, July 28, 2021 

France issues moratorium on prion research after fatal brain disease strikes two lab workers


Wednesday, July 28, 2021 

France issues moratorium on prion research after fatal brain disease strikes two lab workers


SATURDAY, AUGUST 01, 2020

Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993–2018 high proportion of physicians with sCJD were surgeons


SUNDAY, JULY 19, 2020 

Joseph J. Zubak Orthopaedic surgeon passed away Monday, July 6, 2020, Creutzfeldt-Jakob Disease (CJD)


Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

Variant Creutzfeldt–Jakob disease was identified in a technician who had cut her thumb while handling brain sections of mice infected with adapted BSE 7.5 years earlier. The long incubation period was similar to that of the transfusion-transmitted form of the disease.



THURSDAY, JULY 02, 2020 

Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure


Thursday, July 29, 2021 

TSE PRION OCCUPATIONAL EXPOSURE VIA ANIMAL OR HUMAN, iatrogenic transmission, nvCJD or sCJD, what if? 


Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update

***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

What if?


Friday, January 29, 2021 

Scientists identify locations of early prion protein deposition in retina, what if?


Saturday, January 23, 2021

Improved surveillance of surgical instruments reprocessing following the variant Creutzfeldt-Jakob disease crisis in England: findings from a 3-year survey



FRIDAY, SEPTEMBER 06, 2019 

Disinfection of Multi-Use Ocular Equipment for Ophthalmological Procedures: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines


vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what if ???

Greetings Friends, Neighbors, and Colleagues,



Saturday, February 2, 2019 

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?

snip... 

 ***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <*** 

REVIEW 

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

Thursday, March 8, 2018 

Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein


THURSDAY, FEBRUARY 15, 2018 

Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study


FRIDAY, JANUARY 10, 2014

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

Greetings Friends, Neighbors, and Colleagues,

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

Confucius is confused again.

I was just sitting and thinking about why there is no genetic link to some of these TSE prion sGSS, sFFi, and it’s really been working on my brain, and then it hit me today.

what if, vpspr, sgss, sffi, TSE prion disease, was a by-product from iatrogenic gss, ffi, familial type prion disease ???

it could explain the cases of no genetic link to the gss, ffi, familial type prion disease, to the family.

sporadic and familial is a red herring, in my opinion, and underestimation is spot on, due to the crude prehistoric diagnostic procedures and criteria and definition of a prion disease.

I say again, what if, iatrogenic, what if, with all these neurological disorders, with a common denominator that is increasingly showing up in the picture, called the prion.

I urge all scientist to come together here, with this as the utmost of importance about all these neurological disease that are increasingly showing up as a prion mechanism, to put on the front burners, the IATROGENIC aspect and the potential of transmission there from, with diseases/disease??? 

in question, by definition, could they be a Transmissible Spongiform Encephalopathy TSE prion type disease, and if so, what are the iatrogenic chances of transmission?

this is very important, and should be at the forefront of research, and if proven, could be a monumental breakthrough in science and battle against the spreading of these disease/diseases.


Friday, January 10, 2014 

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ??? 

Greetings Friends, Neighbors, and Colleagues, 



Sunday, October 27, 2013 

A Kiss of a Prion: New Implications for Oral Transmissibility 


***The occurrence of contact cases raises the possibility that transmission in families may be effected by an unusually virulent strain of the agent.

snip...see full text here;


snip...see full text;


Title: Transmission of scrapie prions to primate after an extended silent incubation period)

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.



1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).


Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.

2. Determined that pigs naturally exposed to chronic wasting disease (CWD) may act as a reservoir of CWD infectivity. Chronic wasting disease is a naturally occurring, fatal, neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of CWD disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Pigs were assigned to 1 of 3 groups: intracranially inoculated; orally inoculated; or non-inoculated. At market weight age, half of the pigs in each group were tested ('market weight' groups). The remaining pigs ('aged' groups) were allowed to incubate for up to 73 months post inoculation (MPI). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by multiple diagnostic methods. Brain samples from selected pigs were bioassayed in mice expressing porcine prion protein. Some pigs from each inoculated group were positive by one or more tests. Bioassay was positive in 4 out of 5 pigs assayed. Although only small amounts of PrPSc were detected using sensitive methods, this study demonstrates that pigs can serve as hosts for CWD. Detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. Currently, swine rations in the U.S. could contain animal derived components including materials from deer or elk. In addition, feral swine could be exposed to infected carcasses in areas where CWD is present in wildlife populations. The current feed ban in the U.S. is based exclusively on keeping tissues from TSE infected cattle from entering animal feeds. These results indicating the susceptibility of pigs to CWD, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. 





CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

LINE TO TAKE

3. If questions on pharmaceuticals are raised at the Press conference, the suggested line to take is as follows:- 

 "There are no medicinal products licensed for use on the market which make use of UK-derived porcine tissues with which any hypothetical “high risk" ‘might be associated. The results of the recent experimental work at the CSM will be carefully examined by the CSM‘s Working Group on spongiform encephalopathy at its next meeting.

DO Hagger RM 1533 MT Ext 3201


While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...


we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.


May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...


3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...


But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...


Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....


Fortuitous generation of a zoonotic cervid prion strain 

Manuel Camacho, Xu Qi, Liuting Qing, Sydney Smith, Jieji Hu, Wanyun Tao, Ignazio Cali, Qingzhong Kong. Department of Pathology, Case Western Reserve University, Cleveland, USA 

Aims: Whether CWD prions can infect humans remains unclear despite the very substantial scale and long history of human exposure of CWD in many states or provinces of USA and Canada. Multiple in vitro conversion experiments and in vivo animal studies indicate that the CWD-to-human transmission barrier is not unbreakable. A major long-term public health concern on CWD zoonosis is the emergence of highly zoonotic CWD strains. We aim to address the question of whether highly zoonotic CWD strains are possible. 

Materials and Methods: We inoculated several sCJD brain samples into cervidized transgenic mice (Tg12), which were intended as negative controls for bioassays of brain tissues from sCJD cases who had potentially been exposed to CWD. Some of the Tg12 mice became infected and their brain tissues were further examined by Western blot as well as serial passages in humanized or cervidized mice. 

Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a “cervidized” CJD strain that we termed CJDElkPrP. We observed 100% transmission of the original CJDElkPrP in transgenic mice expressing human PrP. We passaged CJDElkPrP two more times in the Tg12 mice. We found that such second and third passage CJDElkPrP prions retained 100% transmission rate in the humanized mice, despite that the natural elk CWD isolates and CJDElkPrP share the same elk PrP sequence. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice. 

Conclusions: Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time. 

Funded by: NIH Grant number: R01NS052319, R01NS088604, R01NS109532 

Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O'Rourke for providing the sCJD samples and the CWD samples used in this study, respectively

"Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time."

PRION 2023 CONTINUED;  


***> Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.


PART 2. TPWD CHAPTER 65. DIVISION 1. CWD


31 TAC §§65.82, 65.85, 65.88


The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.


***> Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.



17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.


Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2


1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA


Abstract


The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. 


***> Our results show positive prion detection in all products. 


***>To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. 


***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products. 


***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. 


***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. 


***> Our results show positive prion detection in all products. 


***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.


***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products. 


=====


Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.


Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany


***> Further passage to cervidized mice revealed transmission with a 100% attack rate. 


***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one. 


****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism. 


***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease


=====



Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD


Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases.


Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles.


Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.


Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.


Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.


https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286


PLoS One. 2020; 15(8): e0237410. Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410 PMCID: PMC7446902 PMID: 32817706 


Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease 


Abstract 


While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.


snip...


The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespective of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic. 


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446902/


Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD 

Original Paper Open access Published: 22 August 2022 volume 144, pages767–784 (2022)

HIGHLIGHTS OF THIS STUDY

================================

Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.

In this study, we evaluated the zoonotic potential of CWD using a transgenic mouse model overexpressing human M129-PrPC (tg650[12]). We inoculated tg650 mice intracerebrally with two deer CWD isolates, Wisc-1 and 116AG [22, 23, 27, 29]. We demonstrate that this transgenic line was susceptible to infection with CWD prions and displayed a distinct leading clinical sign, an atypical PrPSc signature and unusual fecal shedding of infectious prions. Importantly, these prions generated by the human PrP transgenic mice were transmissible upon passage. Our results are the first evidence of a zoonotic risk of CWD when using one of the most common CWD strains, Wisc-1/CWD1 for infection. We demonstrated in a human transgenic mouse model that the species barrier for transmission of CWD to humans is not absolute. The fact that its signature was not typical raises the questions whether CWD would manifest in humans as a subclinical infection, whether it would arise through direct or indirect transmission including an intermediate host, or a silent to uncovered human-to-human transmission, and whether current detection techniques will be suffcient to unveil its presence.

Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.

Our results indicate that if CWD crosses the species-barrier to humans, it is unlikely to resemble the most common forms of human prion diseases with respect to clinical signs, tissue tropism and PrPSc signature. For instance, PrPSc in variable protease-sensitive prionopathy (VPSPr), a sporadic form of human prion disease, and in the genetic form Gerstmann-Sträussler-Scheinker syndrome (GSS) is defined by an atypical PK-resistant PrPSc fragment that is non-glycosylated and truncated at both C- and N-termini, with a molecular weight between 6 and 8 kDa [24, 44–46]. These biochemical features are unique and distinctive from PrPSc (PrP27-30) found in most other human or animal prion disease. The atypical PrPSc signature detected in brain homogenate of tg650 mice #321 (1st passage) and #3063 (2nd passage), and the 7–8 kDa fragment (Figs. 2, 4) are very similar to that of GSS, both in terms of migration profile and the N-terminal cleavage site.

CWD in humans might remain subclinical but with PrPSc deposits in the brain with an unusual morphology that does not resemble the patterns usually seen in different prion diseases (e.g., mouse #328; Fig. 3), clinical with untraceable abnormal PrP (e.g., mouse #327) but still transmissible and uncovered upon subsequent passage (e.g., mouse #3063; Fig. 4), or prions have other reservoirs than the usual ones, hence the presence of infectivity in feces (e.g., mouse #327) suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.

suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.

=================================

Supplementary Information The online version contains supplementary material available at 


snip...see full text;




Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.